6FCH) in GFP-ES cells

6FCH) in GFP-ES cells. mesoderm-derived cells and germ cells from ES cells, whereas it inhibits the derivation of endodermal cell lineages. It was concluded that the topomorpholocial cues such as roughness and alignment should be considered in addition to other scaffolds properties to design an efficient electrospun scaffold for specific tissue engineering. Introduction Embryonic stem (ES) cells are pluripotent cells derived from the inner mass of pre-implantation embryos, and they can differentiate into all cell lineages derived from three germ layers.1 This capacity makes them an invaluable model that investigates the influence of different physical2,3 and chemical cues4 on differentiation/development of specialized cells.5C7 Mostly, the differentiation process is begun by embryoid body (EB) formation, which ensures the existence of ectodermal, mesodermal, and endodermal precursors for further differentiation. Electrospinning is a simple and reproducible method of producing nanofibrous mats with diameters sized from micron to sub-micron ranges, which can be applied for various research and biomedical applications.8C11 Recently, differentiation of ES and mesenchymal stem Cilastatin sodium cells cultured on electrospun nanofibrous scaffolds, which mimic the extracellular matrix (ECM), into specialized cells such as neural and epidermal cell lineages and cardiomyocytes has received a lot of attention for tissue engineering.2,12,13 To enhance the differentiation-promoting effect of electrospun nanofibrous mats, they can be functionalized by blending, encapsulation, or immobilization of bioactive materials such as growth factors, for instance, epidermal growth factor (EGF) or ECM proteins such as Laminin.14,17C20 The different physical and chemical properties such as diameter and alignment of nanofibrous mats in scaffolds, pore size, porosity of scaffolds, Cilastatin sodium and chemistry of polymer and solvent can promote or inhibit a specific differentiation/programming pathway. For instance, several investigations proved the promoting effect of aligned architecture of nanofibrous mats in neurite outgrowth and neural differentiation of ES, nerve stem cells, and dorsal root ganglion cells.2,15,16 Xie demonstrated the efficient differentiation of EBs derived from murine CE3 and RW4 ES cells into neural lineages when they are differentiated on aligned polycaprolactone (PCL) nanofibrous scaffolds.2 Similarly, Ghasemi-Mobarakeh also confirmed the positive effect of alignment in neural differentiation of C17.2 and showed that the effect can even be augmented by incorporation of gelatin in the PCL nanofibrous scaffolds by blending.15 Matrigel as a natural ECM, which is mainly composed from laminin and collagen type IV, is used for angiogenesis,21 improvement of graft survival,22,23 proliferation, and differentiation of stem Cilastatin sodium cells.22,24 Interestingly, different studies showed that Matrigel can support/promote the differentiation of stem cells into different cell lineages, such as neural, hepatic, and cardiac cell lineages.22,25C27 Furthermore, several investigations showed that the coating of culture surface with Matrigel bypassed the necessity of ES and induced pluripotent stem (iPS) cell cultures to the feeder and provided a niche for maintaining the undifferentiated status of the pluripotent cells.28,29 Porosity, pore size, and chemical components of nanofibrous scaffolds and grafting materials have significant impacts on infiltration, proliferation, and differentiation of stem cells.30C33 To the best of our knowledge, so far there is no report that reveals the effect of roughness and alignment as topomorpholocial properties on differentiation of mouse ES (mES) to three germ layers and their derivates simultaneously. In most differentiation studies, the investigators only trace a specific cell programming in the differentiated cell population, and eventually, they exclude only the presence of other related cells, which are derived from the same progenitors as interested cells in development34,35; whereas the ES cells are pluripotent and Rabbit Polyclonal to MRPL51 have the potential to differentiate to all three germ layers cell derivates. Therefore, the presence of other cell lineages should be studied to estimate the purity of differentiated cell population. This study aims first at comparing the efficiency of different programming of murine ES cells seeded on electrospun PLGA scaffolds with different roughness topographies, confirmed by atomic forced microscopy (AFM), and second, the combinatory effect of.